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The Weierstrass transform

f(x) = too k(x - y, 1) 1>(y) dy,

and its inversion formula (see [3], p. 189)

lim fd+~OO K(s - x, t)f(s) ds = 1>(x),
t--+1- d-,oo

where k(x, t) = (47Ttr 1/2 e-x2
/
4t, (1)

where K(s, t) = (n 1/2 e"2/4t , (2)

give rise to the Gauss-Weierstrass singular integral

I Jd+iOO fG(x,l - t,1» = 27Ti d-ioo K(s - x, t)f(s)ds = :00 k(x - u, 1~ t) 1>(u) duo (3)

Saturation theorems for Gauss-Weierstrass singular integral were studied
recently by M. Kozima and G. I. Sunouchi ([5], p. 153), E. G6r1ich ([14], p.
131), and before that, by several other authors, references to whom may be
found in [1].

For some Banach spaces E of functions, it was found that G(x,1 - t;1» is
saturated of order 1- t, that is: IIG(" 1 - t;1» - 1>OIIE = 0(1- t) as t -+ 1-,
if and only if 1>(x) = 0 a.e., and ttG(" 1 - t;1» - 1>( ·)IIE = 0(1- t) as t -+ 1-,
if and only if 1>(x) Ef!ltcE, f!lti={O}; also the saturation class f!lt was
characterized.

These results may be applicable for the inversion of Weierstrass transform,
(2), since they enable us to determine, under certain restriction, how "fast" the
inversion operator tends to 1>, and for what functions it tends at that rate (the
saturation class). However, to determine if 1> Ef!lt, we have to check if
II G(', 1 - t,1» - 1>(' )IIE = 0(1 - t), t -+ 1-, but it is 1> that we want to find and
actually try to calculate as a limit of G(x, I - t,1». To avoid the loop arising if
we start with the Weierstrass transform, we try to determine if 1> E f!lt directly
fromf(x) in (1); in the process we obtain results on other classes of functions,
interesting by themselves.

318



INVERSION OF WEIERSTRASS TRANSFORM 319

THEOREM 1. Let E be Li-ro, ro), 1 <.p < ro, or Co(-OO, 00), and let 4> E E.
Then for n = 1, 2, ... , IIGnC-, 1- t,4»IIE = 0(1), t -'7- 1-, if and only if 4>
(in E). Also, IIGnC-, 1- t,4»IIE = 0(1), t -'7- 1-, ifandonly if4> EfJinc E. Here

1 Id+ioo ( a)nGnCx,1 - t, 4» = -2' .::l K(s - x, t)f(s)ds,
7Tl d-,oo uS

f(s), K(s, t) are defined by (1) and (2), and fJin is defined as follows:

(a) fJi,,= {4>:4> ELI and 4><n-I)(x) E B. v.} whenE=L b

(b) fJin= {4>: 4> E Lp and 4><n)(x) E L p } when E = Lp , 1 <p < 00,

(c) fJin= {4>:4> E Co and 4><n)(x) E L oo} when E= Co.

Recalling the result of [5], p. 153, we have:

Corollary. If 4> E L p ( -00, 00), 1 <. p < 00, or 4> E Co(-00, 00), then

(4)

ifand only if

IIG(',1 - t, 4» - 4>011 = 0(1 - t), t -'7- 1-,

IIGz(',l - t, 4»11 = 0(1), t-'7-1-.

Remark. In Theorem 1 there is a requirement made directly on 4>-to belong
to E. But for E =Lp , 1 <.p < 00, necessary and sufficient conditions, onf(x),
for 4> to belong to Lp ([3], pp. 195-6) are known. When E = Co, the objection
raised is justified, since no representation theorem is known for 4> E Co(-00,(0)
(not even for 4> E B.c. (-00,00)).

For the proof of our theorem, we need the following

LEMMA. Let !/J E!?) (the L. Schwartz space oftest functions), and let

GnCx,l - t,!/J)

1 Id+ioo (0 )n 1 IOO= -2' . ::l" K(s - x, t) . /- k(s - y, 1) !/J(y) dy ds.
7Tl d-,oo uS V 47T -00

Thenfor E = Lp , 1 <.p < 00, or E = Co,

(5)

t-'7-1-, (6)

where E* is the conjugate space ofE.
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t -? 1-. (7)

Proof Using Fubini's theorem, we have

1 foo fd+ioo (0 )nGn(x, 1- t,if;) = 2----: if;(y)dy . a K(s - x, t)k(s - y, l)ds
7Tl -00 d-,oo S

1 fd+iOO ( 0 )n
= f: if;(y)-2' . - ~ K(s - x, t)k(s - y, 1) ds

00 7Tl d-,oo uX

(
o)n 1 fd+ioo

= foo if;(y) - ~ 2----: K(s - x, t)k(s - y, l)ds.
-00 uX 7Tl d-ioo

The last step is justified since, for t < 1, we can prove, following the method in
([3], p. 190) and [2], thattheinnerintegrals converge absolutely, uniformlyinx.
Using Theorem 2.5 of ([3], p. 177), we have

fOO ( 0 )<n)
Gix,1 - t, if;) = -00 - ox k(x - y, 1 - t)if;(y) dy

= (-I)n roo k(x - y, 1 - t) if;<n)(y) dy.

Using ([5], p. 148),

11IGi·,1 - t, if;) - (-l)nif;<n)(.) _ cif;<n+2)( .)\', = 0(1),
I I-t E*

Actually, in [5], the norm used is that of E; however, the proof with E*~norm
is quite similar, and the lemma proved there is used with the norm ofE* rather
than that ofE. Using (7), one immediately obtains (6). One can also prove (6)
directly for E* = L p , 1 < P < 00, and E* = N.B.V.; for the latter the relation

is used.

Proof of Theorem 1. We first prove that II Gix, 1 - t,4>IIE = 0(1), t -? 1-,
implies 4> = 0 in E (the opposite implication is trivial). If if; E f», then if; is in
the dual space ofE, and

I(t) = roo Gix, 1 - t; 4» if;(x) dx = 0(1), t -? 1-.

We have also, following [5], using Fubini's theorem and our Lemma,

Hence, <4><n), if;> = 0 for every if; E f», and therefore 4><n) = 0 in f»', or, c/> is a
polynomial of degree n, and since it belongs to Lp , 1 <p < 00, or to Co, 4> = o.
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To determine f!llm for lj;(x) E!», we get by using our Lemma,

S:", Gn(x, 1 - t, r/J) lj;(x) dx = 5:", Gn(x, 1 - t, lj;) rj>(x) dx

= (_I)n f:", lj;<n)(x)r/J(x) + 0(1), t --+ 1-.

Using IIGn(x,l-t,r/J)!!E=O(I) in case E=Lp , l<p<oo, we recall that a
closed ball is weakly compact, and since 0/ EL q (because it belongs to !»),

5:", Gu(x, 1 - tv; r/J) lj;(x) dx = f:",j(x) o/(x) dx + 0(1), jJ --+ 00,

and r/J<U)(x) ~ j(x)) = Oin!»'; thereforejELp implies rj><U)(x) ELr
The weak * conditional capactness of a bounded set in B.V. (-00,00) will

yield the result in case E = L 10 following [5]. A bounded set in Co with the weak
topology introduced by lj; E!», will be conditionally compact with limits in
Leo, which will yield our theorem in case E = Co.
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